Psychophysiological stress profile: a protocol to differentiate normal vs pathological subjects

Andrea Crocetti 1, Spiridione Masaraki 1, Silvia Merati 2, Roberta Menotti 2, Stella Forti 3, Gioacchino Aiello 2
1. Scuola ASIPSE, Milan, Italy
2. Villa S. Benedetto, Como, Italy
3. Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy

Key words: psychophysiology; assessment; stress; psychopathology; heat rate

Abstract
Psychophysiological stress profile examination is useful to quantify the level of individual stress reactivity. The aim of this study is to find differences between healthy subjects and subjects with psychopathological features. We have recruited 20 healthy subjects, aged between 25 and 40 years. Subjects with a history of psychopathological episodes, epilepsy, head injuries, drug abuse were excluded. This group was compared with one group of subjects with Major Depressive Disorder (MD), one with Panic Attack Disorder (PAD) and one with Obsessive Compulsive Disorder (OCD). Assessment of the psychophysiological stress profile was performed while the participants underwent a stress test, and included the simultaneous recording of the following variables: electrodermal activity, heart rate, surface electromyogram. The schedule of the stressors was: 2 minutes baseline, tactile stimulus, visual stimulation, painful stimulus, mental calculation, hyperpnoea. The total length of the profile was 30 minutes. For each variable, baseline, max value and mean value of the session were calculated and then compared across groups. Our study shows that healthy subjects present different profile compared to pathological subjects. These preliminary results suggest that our model is able to measure differences between healthy and pathological subjects. Therefore, it could represent a tool for the assessment of the patient, orienting the aims of the succeeding psychotherapy.

Correspondence to: Andrea Crocetti, Via Don Bosco 11/e, 26831 Casalmaiocco (LO) Italy.
PHONE: +39 338 6272952, E-MAIL: a_crocetti@tiscali.it

© Society of Integrated Sciences • International Medart
INTRODUCTION

Psychophysiological stress profile (PSP) is a tool which allows the evaluation of the neurovegetative physiological trend (Stern et al. 2001; Cacioppo et al. 2000). Usually, PSP is assessed during periods of rest and cognitive or perceptual tasks, in order to understand the state of the autonomic nervous system and its responses to environmental stimuli (Hatch & Saito 1990). In the laboratory, the delivery of the experimental stimuli is adopted to understand the patient’s condition, with or without environmental requirements, in a way which is comparable among subjects.

Here, we want to describe a psychophysiological stress profile protocol and its application to healthy and psychopathological subjects, in order to show differences between them. The main aim of this work is to evaluate the possibility of using PSP as an objective tool to understand the patient’s condition (Diaz et al. 2003), which might complement subjective data routinely collected in clinical practice via questionnaires. It’s common experience to discover psychophysiological dynamics (Schwartz 1999) discordant to what the patient describe: patients telling quietness while are psychophysically stressed or patients organically relaxed but describing themselves as strongly stressed.

If the usefulness of such a tool were demonstrated, it could be employed to guide the therapist, possibly maximizing the treatment efficiency.

It would be possible to understand better the real pathological state (Pruneti & Boem 1995; Clements & Turpin 2000); consequently, treatment follows right aims easier, sharable with the patient and with the scientific community.

Biofeedback monitoring tools are nowadays getting technically easier to use and also less expensive, and could therefore be widely adopted to obtain a more complete profile of the patient.

Abbreviations:
MD – major depressive disorder
PAD – panic attack disorder
OCD – obsessive compulsive disorder
PD – personality disorder
PSP – psychophysiological stress profile
EMG – electromiogram
GSR – galvanic skin response
HR – heart rate
MATERIALS AND METHODS

We have recruited 20 subjects without psychological diagnosis, aged between 25 and 40 years, mean age 30 ± 4.35. Subjects with a history of psychopathological episodes, epilepsy, head injuries, drug abuse were excluded.

We have also recruited 20 pathological subjects, with the following diagnosis and before starting any subsequent therapy (pharmacological or psychological): Major Depressive Disorder (MD, n=5, mean age 37.0 ± 4.90), Panic Attack Disorder (PAD, n=5, mean age 32.60 ± 2.79) (Alpers 2009), Obsessive Compulsive Disorder (OCD, n=5, mean age 34.2 ± 10.78), Personality Diseases (PD, n=5, mean age of 36 ± 8.68).

Assessment of the psychophysiological stress profile (American Psychological Association 1993) was performed while the participants underwent a stress test, according to the following protocol: 2 minutes baseline, tactile stimulus (a soft single tip of the right forearm), 1 minute without stimuli, threat stimulus (i.e. presentation of a dangerous object, such as a nail, with the information that the operator is going to use it to hurt the subject), 1 minute rest, painful stimulus (touching the subject with an needle), 1 minute rest, mental calculation (serial subtraction of the number 17 from the number 1013) for two minutes, 1 minute rest, hyperpnea (fast breathing) for 2 minutes.

Assessment of the psychophysiological stress profile (Schwartz & Andrasik 2003) included the simultaneous recording of the following variables: electrodermal activity (GSR), heart rate (HR), electromyogram surface (EMG) (Figure 1). Autonomic measures were collected using Psycholab VD13S (Satem, Rome).

EMG was acquired thanks to electrodes placed on the forehead, GSR with electrodes golden covered on the fingerprints of the dominant hand, heart rate with electrodes placed on the wrist.

The first aim of the present study was to evaluate whether psychophysiological stress profile could differentiate the healthy controls from all pathological subjects (pathological group).

Since our data were not normally distributed and given the relatively small size of our sample we used non-parametric statistics.

To this end, the Mann-Whitney test was used to compare across groups each of the autonomic measures independently. Then, we looked at differences between healthy subjects and each subgroups of patients, by using “subgroup”
Tab. 1. Summary of variables significantly different between groups crossing one with all the others.

<table>
<thead>
<tr>
<th></th>
<th>GSR baseline</th>
<th>GSR tactile</th>
<th>HR baseline</th>
<th>HR tactile</th>
<th>HR visual</th>
<th>HR painful</th>
<th>HR mental calculation</th>
<th>HR hyperipnoea</th>
<th>HR global mean value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value</td>
<td>0.048</td>
<td>0.022</td>
<td><0.001</td>
<td>0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.015</td>
<td>0.004</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Tab. 2. Summary of variables significantly different between healthy and personality disease group.

<table>
<thead>
<tr>
<th>HR baseline</th>
<th>HR tactile</th>
<th>HR visual</th>
<th>HR painful</th>
<th>HR global mean value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square</td>
<td>12.000</td>
<td>10.500</td>
<td>12.500</td>
<td>6.000</td>
</tr>
<tr>
<td>p-value</td>
<td>0.007</td>
<td>0.005</td>
<td>0.008</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Tab. 3. Summary of variables significantly different between healthy and OCD group.

<table>
<thead>
<tr>
<th>HR baseline</th>
<th>HR tactile</th>
<th>HR visual</th>
<th>HR painful</th>
<th>HR global mean value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square</td>
<td>20.000</td>
<td>14.000</td>
<td>17.000</td>
<td>11.500</td>
</tr>
<tr>
<td>p-value</td>
<td>0.040</td>
<td>0.012</td>
<td>0.022</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Tab. 4. Summary of variables significantly different between healthy and depressed group.

<table>
<thead>
<tr>
<th>EMG visual</th>
<th>HR baseline</th>
<th>HR tactile</th>
<th>HR visual</th>
<th>HR painful</th>
<th>HR mental calculation</th>
<th>HR hyperipnoea</th>
<th>HR global mean value</th>
<th>HR tactile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square</td>
<td>9.000</td>
<td>5.000</td>
<td>4.500</td>
<td>0.000</td>
<td>13.000</td>
<td>6.000</td>
<td>5.000</td>
<td>4.500</td>
</tr>
<tr>
<td>p-value</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
<td><0.001</td>
<td>0.009</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Tab. 5. Summary of GSR variables significantly different between healthy and PAD group.

<table>
<thead>
<tr>
<th>GSR baseline</th>
<th>GSR tactile</th>
<th>GSR visual</th>
<th>GSR mental calculation</th>
<th>GSR hyperipnoea</th>
<th>GSR global mean value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square</td>
<td>13.000</td>
<td>9.000</td>
<td>10.000</td>
<td>13.000</td>
<td>14.000</td>
</tr>
<tr>
<td>p-value</td>
<td>0.009</td>
<td>0.003</td>
<td>0.004</td>
<td>0.009</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Tab. 6. Summary of HR variables significantly different between healthy and PAD group.

<table>
<thead>
<tr>
<th>HR baseline</th>
<th>HR tactile</th>
<th>HR visual</th>
<th>HR painful</th>
<th>HR mental calculation</th>
<th>HR hyperipnoea</th>
<th>HR global mean value</th>
<th>HR baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square</td>
<td>7.000</td>
<td>7.500</td>
<td>6.500</td>
<td>4.000</td>
<td>12.500</td>
<td>12.500</td>
<td>7.000</td>
</tr>
<tr>
<td>p-value</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td><0.001</td>
<td>0.008</td>
<td>0.008</td>
<td>0.001</td>
</tr>
</tbody>
</table>
(healthy, PAD, OCD…) as between subject factor. In this case, the Kruskal-Wallis test was used to compare all measurements across groups.

All statistical analysis were performed with SPSS, using an alpha value of 0.05.

RESULTS

Firstly, we have looked if each group could be different from all the others. We discovered differences at baseline for both GSR and HR, as well as visual, painful, mental calculation stimuli for HR (Table 1).

Secondly, we have compared healthy controls vs pathological subjects (Hoehn-Saric & McLeod 1988). We observed differences in GSR channel: baseline and visual, painful and calculation stimuli. GSR baseline normal value was 8.2 μS, mean value of pathological group was 12.73 μS.

In HR channel differences were observed in all the variables measured. HR baseline value of healthy group was 72.5 bites per minute (bpm); pathological mean value 89.5 bpm.

About EMG channel, differences about visual, painful and hyperipnea were significant.

Then, we proceeded with the following comparisons.

Healthy subjects were different from PD in all HR values, but mental calculation and hyperipnea (Table 2). Particularly PD group had HR baseline value of 87.6 μS. The same pattern (Table 3) was found in healthy vs OCD comparison (Zahn et al. 1996).

All HR values and visual stimulus in EMG were different in MD compared to healthy subjects. Mean value during baseline of MD group was 94 bpm (Table 4).

PAD shows different GSR and HR ($p<0.01$) pattern (Tables 5 and 6) compared with healthy sample (Spira et al. 2004; Freedman et al. 1984).

Subjects with PD are similar to subjects with OCD. Again, PD group show a quite similar pattern with MD. Otherwise PD is different from PAD only about GSR baseline and tactile stimulus.
Fig. 1. On line display of the psychophysiological trend. On the first stripe Electromiogram (EMG) measured in μV; on the second one, skin conductance in μS; on the third peripheral temperature in Celsius and on the fourth the heart rate. At the bottom, MC means the start point of the stressor, i.e. mental subtraction.

OCD vs MD are different only in GSR and HR painful stimulus, so giving substantially a similar profile. OCD vs PAD are different in GSR tactile and painful stimuli. More interesting is the global mean value of the assessment, significantly different in these two groups.

Depressed vs PAD didn’t seem significantly different.
DISCUSSION

Our data show as general index differentiating healthy subjects from patients: HR values included in the protocol and HR and GSR baseline. It means that simply recording the psychophysiological variables considered at rest, we could acquire data about the presence of a possible pathological condition.

So, healthy sample is different from the pathological one about HR channel. Looking at specific pasychopathologies, PAD is also different about GSR baseline (Figure 2). It seems that skin conductance pattern mainly describe people suffering from PAD.

Data describe as similar patients with OCD and depressed patients. This evidence could support neurophysiological knowledge and epidemiology, where OCD is frequently associated with depression (Sobin et al. 1999). Instead, a different picture appears between OCD and PAD patients.

We can consider this assessment tool as useful in psychological clinical practice, firstly during diagnostic process and then monitoring treatment evolution (La Vaque et al. 2002; Jacobson & Truax 1992). Cost effectiveness balance is clinically good, requiring una tantum session.

ACKNOWLEDGMENTS

We thank Dr. Marco Loggia for helpful comments to the manuscripts.
REFERENCES